Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2826336.v1

ABSTRACT

SARS-CoV-2 has been out breaking around the world for more than three years and continues to evolve variants, which has become a major global health threat. Main protease (Mpro, also called 3CLpro) plays a key role in viral replication and proliferation, making it an attractive drug target. Here, we have identified novel potential inhibitor of Mpro by applying a virtual screening of hundreds Nilotinib structure-like compounds we designed and synthesized. The screened compounds were followed for the SP docking, XP docking, MM-GBSA analysis, IFD docking, MD simulation, ADME/T prediction and then enzymatic assay in vitro. We finally identified compound V291 as a potential SARS-COV-2 Mpro inhibitor with high docking affinity and enzyme inhibitory activity. Moreover, the docking results indicate that His41 is a favorable amino acid for pi-pi inter-actions, while Glu166 can participate in salt bridge formation with protonated primary or secondary amines in the screened molecules. Thus, compounds reported here are capable of engaging the key amino acids His41 and Glu166 in ligand-receptor interactions. Pharmacophore analysis further validates this assertion.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.01.478647

ABSTRACT

SARS-CoV-2 Omicron variant is highly transmissible and extensive morbidity, which has raised concerns for antiviral therapy. In addition, the molecular basis for the attenuated pathogenicity and replication capacity of Omicron remains elusive. Here, we report for the first time that a high-frequency mutation T9I on 2-E of SARS-CoV-2 variant Omicron forms a non-selective ion channel with abolished calcium permeability and reduced acid sensitivity compared to the WT channel. In addition, T9I caused less cell death and a weaker cytokine production. The channel property changes might be responsible for the Omicron variant releases less efficiently and induces a comparatively lower level of cell damage in the infected cells. Our study gives valuable insights into key features of the Omicron variant, further supporting 2-E is a promising drug target against SARS-CoV-2 and providing critical information for the COVID-19 treatment.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.10.439275

ABSTRACT

Safe, economical and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and halt the pandemic. We have constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains two immunodominant peptides screened from receptor-binding domain (RBD) and is fully chemically synthesized. And the vaccine has optimized nanoemulsion formulation, outstanding stability and safety. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of RBD-specific and protective neutralizing antibodies (NAbs), which were also effective to RBD mutations. CoVac501 was found to elicit the increase of memory T cells, antigen-specific CD8 + T cell responses and Th1-biased CD4 + T cell immune responses in NHPs. More importantly, the sera from the immunized NHPs can prevent infection of live SARS-CoV-2 in vitro. One-Sentence Summary A novel SARS-CoV-2 vaccine we developed, CoVac501, which is a fully chemically synthesized and self-adjuvanting peptides conjugated with TLR7 agonists, can induce high-efficient humoral and cellular immune responses against SARS-CoV-2.


Subject(s)
Coronavirus Infections
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.27.174953

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of the virus excessively damaging abilities remains unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is sufficient to cause acute respiratory distress syndrome (ARDS)-like damage in vitro and in vivo. Overexpression of 2-E protein induced rapid pyroptosis-like cell death in various susceptible cells and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damage in lung and spleen. Overexpressed 2-E protein formed cation channels in host cell membranes, eventually leading to membrane rupture. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent protective effects against the 2-E-induced damage both in vitro and in vivo. Importantly, their channel inhibition, cell protection and antiviral activities were positively correlated with each other, supporting 2-E is a promising drug target against SARS-CoV-2.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.09.085811

ABSTRACT

Severe emerging and re-emerging viral infections such as Lassa fever, Avian influenza (AI), and COVID-19 caused by SARS-CoV-2 urgently call for new strategies for the development of broad-spectrum antivirals targeting conserved components in the virus life cycle. Viral lipids are essential components, and viral-cell membrane fusion is the required entry step for most unrelated enveloped viruses. In this paper, we identified a porphyrin derivative of protoporphyrin IX ( PPIX ) that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses including Lassa virus (LASV), Machupo virus (MACV), and SARS-CoV-2 as well as various subtypes of influenza A viral strains with IC 50 values ranging from 0.91±0.25 μM to 1.88±0.34 μM. A mechanistic study using influenza A/Puerto Rico/8/34 (H1N1) as a testing strain showed that PPIX inhibits the infection in the early stage of virus entry through biophysically interacting with the hydrophobic lipids of enveloped virions, thereby inhibiting the formation of the negative curvature required for fusion and blocking the entry of enveloped viruses into host cells. In addition, the preliminary antiviral activities of PPIX were further assessed by testing mice infected with the influenza A/Puerto Rico/8/34 (H1N1) virus. The results showed that compared with the control group without drug treatment, the survival rate and mean survival time of the mice treated with PPIX were apparently prolonged. These data encourage us to conduct further investigations using PPIX as a lead compound for the rational design of lipid-targeting antivirals for the treatment of infection with enveloped viruses.


Subject(s)
Influenza in Birds , Lassa Fever , Influenza, Human , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.07.029884

ABSTRACT

COVID-19 caused by the emerging human coronavirus, SARS-CoV-2, has become a global pandemic, leading a serious threat to human health. So far, there is none vaccines or specific antiviral drugs approved for that. Therapeutic antibodies for SARS-CoV-2, was obtained from hyper immune equine plasma in this study. Herein, SARS-CoV-2 RBD with gram level were obtained through Chinese hamster ovary cells high-density fermentation. The binding of RBD to SARS-CoV-2 receptor, human ACE2, was verified and the efficacy of RBD in vivo was tested on mice and then on horses. As a result, RBD triggered high-titer neutralizing antibodies in vivo, and immunoglobulin fragment F(ab)2 was prepared from horse antisera through removing Fc. Neutralization test demonstrated that RBD-specific F(ab)2 inhibited SARS-CoV-2 with EC50 at 0.07 g/ml, showing a potent inhibitory effect on SARS-CoV-2. These results highlights as RBD-specific F(ab)2 as therapeutic candidate for SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL